Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Android controls the majority of the global OS market. Android Open Source Project (AOSP) is a very complex system with many layers including the apps, the Application Framework, the middle-ware, the customized Linux kernel, and the trusted components. Although security is implemented in every layer, the Application Framework forms an important of the attack surface due to managing the user interface and permissions. Android security has evolved over the years. The security flaws that have been found in the Application Framework led to a redesign of Android permissions. Part of this evolution includes fixes to the vulnerabilities that are publicly released in the monthly Android security bulletins. In this study, we analyze the CVEs listed in the Android security bulletin within the last 6 years. We focus on the Android application framework and investigate several research questions relating to 1) the security relevant components, 2) the type and amount of testing information for the security patches, and 3) the adequacy of the tests designed to test these patches. Our findings indicate that Android security testing practices can be further improved by designing security bulletin update specific tests, and by improving code coverage of patched files.more » « less
-
Internet of Things (IoT) frameworks are designed to facilitate provisioning and secure operation of IoT devices. A typical IoT framework consists of various software layers and components including third-party libraries, communication protocol stacks, the Hardware Abstraction Layer (HAL), the kernel, and the apps. IoT frameworks have implicit data flows in addition to explicit data flows due to their event-driven nature. In this paper, we present a static taint tracking framework, IFLOW, that facilitates the security analysis of system code by enabling specification of data-flow queries that can refer to a variety of software entities. We have formulated various security relevant data-flow queries and solved them using IFLOW to analyze the security of several popular IoT frameworks: Amazon FreeRTOS SDK, SmartThings SDK, and Google IoT SDK. Our results show that IFLOW can both detect real bugs and localize security analysis to the relevant components of IoT frameworks.more » « less
-
Information flow tracking was proposed more than 40 years ago to address the limitations of access control mechanisms to guarantee the confidentiality and integrity of information flowing within a system, but has not yet been widely applied in practice for security solutions. Here, we survey and systematize literature on dynamic information flow tracking (DIFT) to discover challenges and opportunities to make it practical and effective for security solutions. We focus on common knowledge in the literature and lingering research gaps from two dimensions— (i) the layer of abstraction where DIFT is implemented (software, software/hardware, or hardware) and (ii) the security goal (confidentiality and/or integrity). We observe that two major limitations hinder the practical application of DIFT for on-the-fly security applications: (i) high implementation overhead and (ii) incomplete information flow tracking (low accuracy). We posit, after review of the literature, that addressing these major impedances via hardware parallelism can potentially unleash DIFT’s great potential for systems security, as it can allow security policies to be implemented in a built-in and standardized fashion. Furthermore, we provide recommendations for the next generation of practical and efficient DIFT systems with an eye towards hardware-supported implementations.more » « less
An official website of the United States government
